M_ss_ng D_ta

Janet Wittes Statistics Collaborative

_ ssing _at_

Janet Wittes <u>Statistics Collaborative</u>

The Caterpillar

- Calling something the "intent-to-treat" population doesn't mean the analysis is "intent-to-treat"
- "one randomized always analyzed"
- but it depends on the analysis

Selection

Selection

Selection

Study Completers

"Intent-to-treat"

Completers

"Intent-to-treat"

Daily Mean Number of Urinary Incontinence Episodes

Placebo Behavior Drug

Baseline 5.0 ± 3.2 4.8 ± 2.9 4.7 ± 2.9

Proportion missing final value

10% 12% 18%

Change to end of study

LOCF -2.1 -2.9 -3.2

Observed -2.6 -2.8 -3.0

(n=100/group)

Data collected

Completion of study/Withdrawal from study		
Is the subject being withdrawn before the planned end of study?	. _N □ No _Y □ Yes	
Withdrawal from study		
Date of withdrawal: (day) / (month) / (year)		
Reason for premature withdrawal from study (check only one) The subject no longer meets the criteria to remain in the study		

Choices

- Don't have any missing values
- Use what you have
- Redefine your endpoint
- Use slope -"random regression"
- Impute
 - o If so, how?

Avoid missing values

- Important to get follow-up measures
 - Cessation of program not excuse for failing to measure last observation

Use what you have

Does not respect the randomization

Redefine your endpoint

- Ventilator use in acute lung injury
 - Number of days ALIVE and not on ventilator
- Alcoholism
 - o Number of days of known abstinence
 - o Missing data = heavy drinking

Redefine...

- AIDS
 - o Success=Known increase in weight of at least 1 kg
- Incontinence
 - o Success= **Known** number of episodes less than 3 times per day

Impute

- Idea: assign number to the last value
- Choices
 - o LOCF
 - o Windows
 - o Worst case
 - o Worst reasonable case
 - Multiple imputation

LOCF

Windows

Slope

- Assume that slope extends beyond last measure
 - o Even after death?

Slope

Worst case

Worst reasonable case

What's wrong with LOCF?

- Too little variability
- Too many degrees of freedom
- Too little variability

Multiple imputation

- Model relationship of baseline variables with outcome
- Simulate outcome many times
- Calculate statistic
- Average

MI vs. LOCF

- Fixes variability
- Fixes df
- BUT highly model dependent
- And can sometimes give nonsense

What does it mean to impute?

- Reason for missing
 - o Moved
 - o Died
 - o Adverse event
 - o Quit

Classify your missing

- Completely at random
- At random
- Related to treatment

"Sensitivity" Analysis

Do the conclusions vary depending on the method of analysis you use?

AIDS p-values vs. placebo

	Low dose	High dose
Completers	0.006	0.04
Still on original	0.0007	0.10
LOCF	0.012	0.40
Dawson/Lagakos	0.012	0.53
WRC	0.12	0.78
Multiple impute	0.045	0.31

Incontinence example

- How sure are we that
 - o The drug works?
 - o The behavioral intervention works?

Conclusion

- Think of how much missing data you will have
- Design study to minimize missing data
- In analysis, check how robust your analyses are